Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity
نویسندگان
چکیده
Polymers of intrinsic microporosity (PIMs) are a group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic pervaporation, solvent-resistant nanofiltration and gas and vapour separations. However, they are susceptible to physical ageing, leading to a reduction in permeability over time. An improvement in membrane permeability, control over diffusion selectivity and a reduction of the effect of physical ageing is expected by adding graphene as a nanofiller. Little is experimentally known about how the material disperses in the polymer. Here we used Raman spectroscopy, scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) to study the composite membrane's structure. Our results show that both STEM and Raman spectroscopy are able to identify the presence of graphene-based material in the composite. We show that STEM, through medium angle annular dark field (MAADF) or EELS imaging, can be exploited to obtain information on the morphology and the thickness of the flakes. Our results indicate that there is strong re-agglomeration of initially exfoliated graphene in solution when forming the composite. This is expected to produce strong changes in the mechanical properties and the physical ageing of the
منابع مشابه
Recent Progresses in Preparation and Characterization of RO Membranes
Reverse osmosis (RO) is a water purifcation technology that uses a semipermeable membrane to remove ions, molecules, and larger particles for the production of drinking water. The frst RO membrane for seawater desalination, wastewater treatment and other applications were made of cellulose acetate. But, the polyamide thin-flm composite membrane that can tolerate wide pH...
متن کاملSYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE
In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...
متن کاملSynthesis and characterization of Co3(Po4)2 and Ni3(Po4)2 composite membranes based on PVC: A Comparative electrochemical studies through aqueous electrolyte solutions
The mechanical stability is an important phenomenon which governs many applications based properties of membranes. The inorganic materials of membrane may have been synthesized by qualitative the novel sol-gel or co-precipitation methods of material synthesis. The mMembranes of cobalt (CP) and nickel (NP) composites have been was designed by mixing of the polyvinyl chloride (PVC) with cobalt ph...
متن کاملSynthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation
In this work, separation performance of supported carbon membranes produced from Novolac Phenolic resin as the main precursor and carbon nanotubes as nanofiller were investigated for separation of CO2 from N2 and CH4. Supports were produced by carbonization of Novolac Phenolic resin-activated carbon mixture, and selective layer was coated by dip coating of prepa...
متن کاملSynthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation
In this work, separation performance of supported carbon membranes produced from Novolac Phenolic resin as the main precursor and carbon nanotubes as nanofiller were investigated for separation of CO2 from N2 and CH4. Supports were produced by carbonization of Novolac Phenolic resin-activated carbon mixture, and selective layer was coated by dip coating of prepa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016